Eigenvalue bounds for independent sets
نویسندگان
چکیده
We derive bounds on the size of an independent set based on eigenvalues. This generalizes a result due to Delsarte and Hoffman. We use this to obtain new bounds on the independence number of the Erdős-Rényi graphs. We investigate further properties of our bounds, and show how our results on the Erdős-Rényi graphs can be extended to other polarity graphs.
منابع مشابه
New Feasibility Conditions for Directed Strongly Regular Graphs
We prove two results for directed strongly regular graphs that have an eigenvalue of multiplicity less than k, the common out-degree of each vertex. The first bounds the size of an independent set, and the second determines an eigenvalue of the subgraph on the out-neighborhood of a vertex. Both lead to new nonexistence results for parameter sets.
متن کاملOn the Lovász θ-number of almost regular graphs with application to Erdős–Rényi graphs
We consider k-regular graphs with loops, and study the Lovász θ-numbers and Schrijver θ′–numbers of the graphs that result when the loop edges are removed. We show that the θ-number dominates a recent eigenvalue upper bound on the stability number due to Godsil and Newman [C.D. Godsil and M.W. Newman. Eigenvalue bounds for independent sets. Journal of Combinatorial Theory B, to appear]. As an a...
متن کاملBounds for the Co-PI index of a graph
In this paper, we present some inequalities for the Co-PI index involving the some topological indices, the number of vertices and edges, and the maximum degree. After that, we give a result for trees. In addition, we give some inequalities for the largest eigenvalue of the Co-PI matrix of G.
متن کاملTwo S-type Z-eigenvalue inclusion sets for tensors
In this paper, we present two S-type Z-eigenvalue inclusion sets involved with a nonempty proper subset S of N for general tensors. It is shown that the new sets are tighter than those provided by Wang et al. (Discrete Contin. Dyn. Syst., Ser. B 22(1):187-198, 2017). Furthermore, we obtain upper bounds for the spectral radius of weakly symmetric nonnegative tensors, which are sharper than exist...
متن کاملThe clique and coclique numbers’ bounds based on the H-eigenvalues of uniform hypergraphs
In this paper, some inequality relations between the Laplacian/signless Laplacian H-eigenvalues and the clique/coclique numbers of uniform hypergraphs are presented. For a connected uniform hypergraph, some tight lower bounds on the largest Laplacian H+-eigenvalue and signless Laplacian H-eigenvalue related to the clique/coclique numbers are given. And some upper and lower bounds on the clique/...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. B
دوره 98 شماره
صفحات -
تاریخ انتشار 2008